200 research outputs found

    A novel plasmid-encoded serotype conversion mechanism through addition of phosphoethanolamine to the O-antigen of Shigella flexneri

    Get PDF
    Abstract Shigella flexneri is the major pathogen causing bacillary dysentery in developing countries. S. flexneri is divided into at least 16 serotypes based on the combination of antigenic determinants present in the O-antigen. All the serotypes (except for serotype 6) share a basic O-unit containing one N-acetyl-D-glucosamine and three L-rhamnose residues, whereas differences between the serotypes are conferred by phage-encoded glucosylation and/or O-acetylation. Serotype Xv is a newly emerged and the most prevalent serotype in China, which can agglutinate with both MASF IV-1 and 7,8 monoclonal antibodies. The factor responsible for the presence of MASF IV-1 (E1037) epitope has not yet been identified. In this study, we analyzed the LPS structure of serotype Xv strains and found that the MASF IV-1 positive phenotype depends on an Oantigen modification with a phosphoethanolamine (PEtN) group attached at position 3 of one of the rhamnose residues. A plasmid carried gene, lpt-O (LPS phosphoethanolamine transferase for O-antigen), mediates the addition of PEtN for serotype Xv and other MASF IV-1 positive strains. These findings reveal a novel serotype conversion mechanism in S. flexneri and show the necessity of further extension of the serotype classification scheme recognizing the MASF IV-1 positive strains as distinctive subtypes

    第一外科この1年

    Get PDF
    © 2015, American Society for Microbiology. The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmental Escherichia coli isolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen of E. coli O22, differing only in side-chain α-D-glucosylation in the former, mediated by a gtr locus on the chromosome. Spontaneous mutations of E. coli 4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions of E. coli 4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages

    Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s

    Get PDF
    © 2015, American Society for Microbiology. The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmental Escherichia coli isolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen of E. coli O22, differing only in side-chain α-D-glucosylation in the former, mediated by a gtr locus on the chromosome. Spontaneous mutations of E. coli 4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions of E. coli 4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages

    Structure of the capsular polysaccharide of Acinetobacter baumannii 1053 having the KL91 capsule biosynthesis gene locus

    Get PDF
    © 2014 Elsevier Ltd. All rights reserved. Acinetobacter baumannii 1053 is the type strain for the maintenance of specific bacteriophage AP22, which infects a fairly broad range of A. baumannii strains circulating in Russian clinics and hospitals. A capsular polysaccharide (CPS) was isolated from cells of strain 1053 and studied by sugar analysis along with 1D and 2D 1H and 13C NMR spectroscopy. The following structure of the linear trisaccharide repeating unit was established: →4)-β-D-ManpNAcA-(1→4)-β-D-ManpNAcA-(1→3)-α-D-FucpNAc-(1→ where ManNAcA and FucNAc indicate 2-acetamido-2-deoxymannuronic acid and 2-acetamido-2,6-dideoxygalactose, respectively. A polysaccharide having the same repeating unit but a shorter chain was isolated by the phenol-water extraction of bacterial cells. Sequencing of the CPS biosynthesis gene locus showed that A. baumannii 1053 belongs to a new group designated KL91. The gene functions assigned putatively by a comparison with available databases were in agreement with the CPS structure established

    K19 capsular polysaccharide of acinetobacter baumannii is produced via a Wzy polymerase encoded in a small genomic island rather than the KL19 capsule gene cluster

    Get PDF
    © 2016 The Authors.Polymerization of the oligosaccharides (K units) of complex capsular polysaccharides (CPSs) requires a Wzy polymerase, which is usually encoded in the gene cluster that directs K unit synthesis. Here, a gene cluster at the Acinetobacter K locus (KL) that lacks a wzy gene, KL19, was found in Acinetobacter baumannii ST111 isolates 28 and RBH2 recovered from hospitals in the Russian Federation and Australia, respectively. However, these isolates produced long-chain capsule, and a wzy gene was found in a 6.1 kb genomic island (GI) located adjacent to the cpn60 gene. The GI also includes an acetyltransferase gene, atr25, which is interrupted by an insertion sequence (IS) in RBH2. The capsule structure from both strains was→3)-α-D-GalpNAc-(1→4)-α-D-GalpNAcA-(1→3)-β-D-QuipNAc4NAc-(1→, determined using NMR spectroscopy. Biosynthesis of the K unit was inferred to be initiated with QuiNAc4NAc, and hence the Wzy forms the β-(1→3) linkage between QuipNAc4NAc and GalpNAc. The GalpNAc residue is 6-O-acetylated in isolate 28 only, showing that atr25 is responsible for this acetylation. The same GI with or without an IS in atr25 was found in draft genomes of other KL19 isolates, as well as ones carrying a closely related CPS gene cluster, KL39, which differs from KL19 only in a gene for an acyltransferase in the QuiNAc4NR synthesis pathway. Isolates carrying a KL1 variant with the wzy and atr genes each interrupted by an ISAba125 also have this GI. To our knowledge, this study is the first report of genes involved in capsule biosynthesis normally found at the KL located elsewhere in A. baumannii genomes

    Новая электронная база данных по бактериальным углеводам (BCSDB)

    Get PDF
    A new free glycomic database (Bacterial Carbohydrate Structure Database) was established. It contains data on the structure, bibliography, NMR spectra, biochemical and other properties of all bacterial carbohydrates reported before 2006. The paper describes the database architecture and interface and BCSDB structure encoding language.Создана открытая структурная база данных по бактериальным углеводам. В работе освещается структура базы данных, ее интерфейс и специально разработанный язык линейной кодировки структур углеводов

    Characterization of Modular Bacteriophage Endolysins from Myoviridae Phages OBP, 201ϕ2-1 and PVP-SE1

    Get PDF
    Peptidoglycan lytic enzymes (endolysins) induce bacterial host cell lysis in the late phase of the lytic bacteriophage replication cycle. Endolysins OBPgp279 (from Pseudomonas fluorescens phage OBP), PVP-SE1gp146 (Salmonella enterica serovar Enteritidis phage PVP-SE1) and 201ϕ2-1gp229 (Pseudomonas chlororaphis phage 201ϕ2-1) all possess a modular structure with an N-terminal cell wall binding domain and a C-terminal catalytic domain, a unique property for endolysins with a Gram-negative background. All three modular endolysins showed strong muralytic activity on the peptidoglycan of a broad range of Gram-negative bacteria, partly due to the presence of the cell wall binding domain. In the case of PVP-SE1gp146, this domain shows a binding affinity for Salmonella peptidoglycan that falls within the range of typical cell adhesion molecules (Kaff = 1.26×106 M−1). Remarkably, PVP-SE1gp146 turns out to be thermoresistant up to temperatures of 90°C, making it a potential candidate as antibacterial component in hurdle technology for food preservation. OBPgp279, on the other hand, is suggested to intrinsically destabilize the outer membrane of Pseudomonas species, thereby gaining access to their peptidoglycan and exerts an antibacterial activity of 1 logarithmic unit reduction. Addition of 0.5 mM EDTA significantly increases the antibacterial activity of the three modular endolysins up to 2–3 logarithmic units reduction. This research work offers perspectives towards elucidation of the structural differences explaining the unique biochemical and antibacterial properties of OBPgp279, PVP-SE1gp146 and 201ϕ2-1gp229. Furthermore, these endolysins extensively enlarge the pool of potential antibacterial compounds used against multi-drug resistant Gram-negative bacterial infections

    Lectin-like bacteriocins from pseudomonas spp. utilise D-rhamnose containing lipopolysaccharide as a cellular receptor

    Get PDF
    Lectin-like bacteriocins consist of tandem monocot mannose-binding domains and display a genus-specific killing activity. Here we show that pyocin L1, a novel member of this family from Pseudomonas aeruginosa, targets susceptible strains of this species through recognition of the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide that is predominantly a homopolymer of d-rhamnose. Structural and biophysical analyses show that recognition of CPA occurs through the C-terminal carbohydrate-binding domain of pyocin L1 and that this interaction is a prerequisite for bactericidal activity. Further to this, we show that the previously described lectin-like bacteriocin putidacin L1 shows a similar carbohydrate-binding specificity, indicating that oligosaccharides containing d-rhamnose and not d-mannose, as was previously thought, are the physiologically relevant ligands for this group of bacteriocins. The widespread inclusion of d-rhamnose in the lipopolysaccharide of members of the genus Pseudomonas explains the unusual genus-specific activity of the lectin-like bacteriocins
    corecore